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The general idea of a “numerical transform” on a high speed computer for a general 
domain, abbreviated as a machine transformation, is illustrated by employing an 
equilateral triangle mesh plant for a general, second-order quasi-lincar elliptic partial 
differential equation subject to a general third boundary value condition in a general 
domain. The feasibility of the technique for linear elliptic equations is demonstrated 
by two test problems, for which the numerical solutions arc compared with exact 
analytic solutions. A new computing technique is devised for linear elliptic equations, 
and possible extensions to quasi-linear boundary value problems arc discussed. 

This method eliminates the programming ditliculties of a finite-difference method 
near the curved boundaries, and, most important, it can be preprogrammed for a 
general class of domains to yield numerical solutions. 

The method of conformal transformation is one of the most useful tools in 
classical analysis [I]. However, the method is not practical analytically for non- 
Laplacian operators or three-dimensional domains because of the dificulties in 
solving the differential equations after the transformation. Furthermore, some 
transformations are difficult to find and are not included in a dictionary [2]. 

In this paper, we shall consider a “numerical transformation,” using high speed 
computers, which is abbreviated as a “machine transformation” using the ter- 
minology of Ref. [3]. It can be shown with ease that a second-order equation does 
not change type under a general transformation, nor does a system of second- 
order differential equations. 

The basic idea is a generalization of the so-called “logical plane” used by 
Winslow [4] as the transform plane.’ The logical plane was employed by Winslow 

1 This is a more useful idea than the ideas given in Ref. [S], which are limited to “conformal 
mappings,” which map a given domain into a rectangle of a fixed aspect ratio. They map only 
discrete points to discrete points. 
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to generate a “topologically regular” nonuniform triangular mesh in the physical 
plane. His finite difference scheme as derived is limited to quasi-linear Poisson 
equations since, as in Ref. [6], the divergence theorem is applied. However, his 
approach may reduce the computing time in cases where there are singular corners. 

Winslow’s logical plane is composed of equilateral triangle meshes for which 
simple finite difference equations can be preprogrammed with relative ease, and it 
can be applied to a whole class of domains. It requires as input only (discrete) 
specified boundary points to generate the finite-diffcrencc equations. This flexibility 
is often sought in practical computer programs. Winslow first applied his method 
to some magnetostatic problems. It was later cxtendcd succcssf~~lly by Chu to 
compute the low-gravity liquid sloshing in arbitrary axisymmetric rigid tanks [7].’ 
A single parallelogram logical plane could be used for an arbitrary convex interior 
domain, which contained no confluent angles and no more than four sharp corners. 
(Domains of equilateral triangles of more corners could bc generated if necessary’, 
and re-entrant corners might be mapped onto straight edges tvith a corner fcr- 
mulation.) 

The basic principle of the transformation is well known and its practicality will 
be illustrated by two-dimensional test examples. To demonstrate the generaiity of 
the methods, an “oblique transformation” of a rectangular or an elliptic domain 
into an cquilatcral triangle mesh plane will be made (Fig. 1); the transformation is: 
in general, not conformal [cf. Eqs. (9a, b)]. This plane (Winslow’s “logical plane”) 
is one of the many possible transform planes which can be used. 

In short, the purpose of the paper is to present the basic idea of a “machine 
transformation” for partial differential equations, particularly, of the elliptic type, 
in a general bounded domain and to demonstrate its versatility and practicality on 
a high speed computer. 

/ 
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Frc;. 1. Transform plane with a 6 x 11 equilateral triangle mesh (M = 6, N =: 1 I). 

2 See also Concus, P., Crane, G. E. and Satterlee, H. M., “Small Amplitude Lateral Sloshing 
in Spheroidal Containers Under Low Gravity Conditions,” NASA CR 72500, February 1969. 
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II. MATHEWATICAL TRANSFORMATION 

Two-dimensional elliptic boundary value problems are considered. The general 
transformation from the physical plane (x, y) to the transformed plane (.$, 7) is 

8 == 5(-G Y), rl = rlk Y), 

and the inverse transform is 

x --: x(5‘, q>, J' = J'(6, ")I. 

The Jacobian of the transformation [8] is 

where 

It is easy to show that 

Then 

(la, b) 

Pa, b) 

(3) 

(4a, b) 

y . (5a, b, c, d) 

(6a) 

(6b) 

Higher derivatives can be obtained by repeated operations. 
Two tasks of transformation are involved: one is to find the interior physical 

points after specifying the physical boundary at a number of discrete points, and 
the other is to transform the partial differential equations into the new variables 
before being approximated by the finite-difference equations. 

A. Mapping ?f the Physical Domain 

The choice of this mapping is largely dependent on its simplicity and the effort 
required for a desired accuracy. 

Without loss of generality, a simply-connected domain with no more than four 
sharp corners will be considered [3]. The boundary of the physical domain is 
specified at discrete points (xb , I+,). These points correspond to the boundary 
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points (cb , Q) in the transform plane ([, 7). Since WC desire to have a prescribed, 
convenient mesh in the (6, r)) plane, ([, 7) must be used as independent variables; 
their values are governed by any suitable elliptic partial differential equation as a 
first-boundary value problem. The simplest choice appears to be the “equipoten- 
tials” transformation [4]; i.e., 5, 77 must satisfy the Laplacc equation in the physical 
plane: 

where 

c*q 11 0, Ua, b) 

The dependent and independent variables can be interchanged by applying Eqs. 
(5a, b, c: d) and (6a, b). One finds that 

ax ec - 83x,, + YX,, = 0 (9a) 

w,, - VY,, + ‘YY,,~ = 0 Pb) 

where 

Equations (9a, b) are clearly coupled quasi-linear elliptic equations, and oniy in 
special cases (xe = y, and x, = --ye) can they be reduced to Laplace equations, 
for which mapping is conformal. 

Equations (9a, b) in the general case can be conveniently solved by the finite 
difference method [4,9, IO] with successive overrelaxation (SOR) of the dependent 
variables and underrelaxation of the coefficients with linearly interpolated initial 
guess. An intermediate solution can bc constructed by SOR, so that each center 
value is the mean value of the six neighboring points. This will then be a better 
initial guess [4] to the true solution. The discrete values of (x, y) at the correspond- 
ing net point (c, 7) are thus determined. The “equivalent finite-difference net” in 
the transformed plane is used simply as auxiliary lines for the finite-difference 
technique, but also it can be used to see if the “machine transformation” yields a 
reasonable set of finite difference equations in the physical plane. 

In general, the numerically calculated boundary may not coincide completely 
with the given boundary at intermediate points. This is not an essential limitation 
since only discrete points are needed in the basic principle of the finite-difference 
method. The finer the mesh, the smaller would be the numerical error. 

3 Cf. Appendix B. 
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B. Mapping of the DifSerential Equation 

For this paper, a general, second-order quasi-linear elliptic partial differential 
equation will be transformed. In the physical plane, the equation takes the form 

where A, B, C, D, E, Fare functions of x, y, and $, and 

AC > B”j4 (clliptic). 

A generalized, third-boundary value problem is considered: 

Wa> 

(12) 

which contains the first, second, and third boundary-value problems [l I]. The 
coefficients %I , %2 , ug , R, may be functions of x, y. 

Extensions to simultaneous, second-order quasi-linear partial differential 
equations can be readily made. Generalizations of the boundary conditions may 
also be possible. 

Using Eqs. (6a, b), Eqs. (11) and (12) can be transformed easily to the form* 

and 

wherej ‘1= 1, 2, 3,4 corresponds to top, right, lower, and left boundaries (Fig. l), 
respectively. Analogous extension to simultaneous differential equations can also 
be made. ------ 

For completeness, A, B, C, D, E, F are given in Appendix A. 

III. METHOD 01: SOLUTIOK 

The general principle is demonstrated by employing the equilateral triangle mesh 
plane as discussed in the Introduction and by using the finite-difference technique. 

4 In general, 4/ic - fi 2 4AC - B, i.e., the din‘crential equation does not change type. 
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A. DiJ&erence Equation Using Equilateral Triangle Mesh 

1. Interior Aiodees. For an interior node-O, the first and second derivatives of a 
functionf(which can be 4, X, y, etc.) can be expressed in terms of six neighboring 
points and the center point (Fig. 2) with a second-order truncation error as 

ff, = Au-, + ?fb -L./J - u-2 L ?A -ih>l, (15a) 
.L, =- t;K.i-2 -- 2fi + .fs) - (f3 -.-- ?f, -L .L>l> (!5b) 

f&, 2: f6 -- 2f0 .” f 3 3 (15c) 
L,” :- f; -- .?fo -! f; , (L5d) 
.f.&,, .= 4 t(fI L .f, + .fi3 i- fj) - (f2 -!- .Ij + 2f;)l. (15e) 

2 1 

6 

ibj hpper Ic!t xrnir 

.(E) Interior Ielt bouncary (f) lnicrior right boundary 
node- 0 node- 0 

0 6 3 

(g) Left lower corner 

(a 1 Interior node- 0 

3 0 6 6 3 0 +.. --, 
66 

4 

1 

rc) Interior upper 
bwndary node - 0 

i 1 

Cdl Cpper riyh: corner 

(h 1 Interior loser 
boundary node-0 

(i) Right lower corner 

FIG. 2. Notations for the neighboring points around node-0 in transform plane. 
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The approximation for the first derivatives is not unique, since the determinant 
vanishes for the Taylor expansions of six neighboring points, each of which is 
truncated to the second order. However, using six neighboring points as above 
[4] may give more accurate approximations on the average. The governing differ- 
ence equation for an interior point is omitted here for brevity but is included in 
Appendix B for completeness. 

2. Interior Boundary Nodes. For the interior boundary nodes, central difference 
formulas can be used for tangential derivatives and forward or backward formulas 
for the “inward” derivatives; e.g., 

(1) For an interior left boundary node (Fig. 2e), 

af _ 
( I- xc-0 - ; (3fO - 4f6 +.a 

af 
( > arlo 

= ; (fi -"a* 

(2) For an interior upper boundary node (Fig. 2c), 

af ( ) zo = iCf6 -fJ5 

af 
( 1 
-= 
3 0 4 Gfo - 4h +.a. 

At other interior boundary nodes, the expressions are analogous. The above 
equations are all of the second-order truncation error. Forward and backward 
formulas are known to possess larger truncation errors. 

3. Corner Nodes. For corner nodes, forward and backward formulas on both 
sides need to be used5; hence, larger truncation errors result unless finer space 
meshes are prescribed near the corners. The explicit equations for the first deriva- 
tives at the upper left corner are simply Eqs. (16a) and (17b). 

For the upper left corner (Fig. 2b), say, the average of Eq. (14) with j = 1 and 4 
is used. It is possible that, for a nonzero flux, a weighted average might be required. 
Thus, 

Similar equations hold for the other corners. 

6 Techniques such as extrapolating to the exterior and then using central difference formulas 
for the boundary condition in the governing interior point difference equation may not be applic- 
able due to the need of diagonal exterior nodes. 
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It is noted that, if the boundary condition is &j/Zn = 0, the consistent normals 
must be used, otherwise the diagonal matrix coefficient would vanish and the usua! 
SOR method cannot be applied. 

B. Jacobian of Transformation 

The finite-difference approximations for the derivatives used are second-order 
approximations in the sense that the truncation error is of the second order of the 
maximum local mesh size. The resultant finite difference equation is a second-order 
approximation if the Jacobian of transformation J possesses an error of the second 
order. To cheek the retention of second-order accuracy, the maximum percentage 
change from the maximum of x,y,, and x,yE to x-9,, - x,,yc may be spot checked, if 
WC know the values of x, y at the nodes. In our test cases, analytic solutions were 
used to check the accuracy of the solution, and the values of J were printed over the 
mesh. Of particular interest is the Jacobian at the corners of the transformed plane. 
Although the accuracy of the corner point Jacobian will not affect either a first 
boundary-value problem or a second boundary-value problem, it /nay affect a 
general third boundary-value problem. If the physical boundary is smooth, the 
corner point Jacobian would become small and the chance of losing accuracy 
becomes large. For example, J lost one significant figure in the case of a full ellipse 
with M .= 1 I, A7 -7 2 1. In general, this may mean a reduction from a second-order 
process to a first-order process. However, when the Jacobian at a corner is “very 
small” due to the corresponding physical corner being smooth (180 degrees), the 
numerator above the Jacobian or its highest power dominates, and then the loss of 
significant figures in the Jacobian at the corner may not reduce the order of accura- 
cy. Except when the mapping is conformal, a general corner point anaiysis stems 
to be very difficult [cf. Eqs. (9a, b)]. If singular corners are suspected and approxi- 
mate numerical solutions can be obtained in the physical plane without using the 
corners, then modified finite difference forms without using corner points in the 
neighborhood of the corners can be programmed to achieve the same goal. With 
the same total number of nodes, finer meshes near the physical corners (which 
might be fictitious if the boundary is a smooth curve) would possibly reduce the 
maximum errors when occurring there. 

C. Higher Order Approximations and Other Transformations 

Higher-order finite difference formulas may be generated with an increase in 
programming effort. Such formulas might not be very effective in reducing trunca- 
tion errors in the boundary. 

In some cases, a different transformed domain s may be required to avoid large 
distortion and to have an accurate Jacobian. 

Unless the very time-consuming large matrix inversion process is required as part 
of a larger program, it is preferable to refine the mesh size somewhat analogous to 
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the popular Simpson’s rule versus Weddle’s rule or the Gaussian quadrature 
formula, etc. [12]. 

It is emphasized that other transformations have not yet been applied but could 
be selected in principle. In particular, a square mesh transform should be tried for 
“reflectively” symmetric problems, since finite difference equations for an equi- 
lateral triangle mesh transformation is not reflectively symmetric and yields a 
slightly nonsymmetric solution for symmetric problems. 

D. Successive Overrelaxation (SOR) Procedure [13] 

After mapping to the transformation plane, the corresponding discrete values 
of (x, y) at the nodes can be solved by overrelaxation of the dependent variables 
(Appendix B) and underrelaxation of the quasi-linear coefficients. This is called 
the “mesh generation,” although a mesh in the physical plane is not essential 
except to locate the nodes where the values of the solution are computed. 

For elliptic differential equations, an overrelaxation factor between 1 and 2 is 
usually used; this is based on the convergence analysis of restricted classes of 
equations. For p-cyclic matrices, the optimum relaxation factor was given in 
Reference [14]. In particular, if two-cyclic, then 

2 
Wept = 1+(1--T* (19) 

If (I) < Wogt , then the eigenvalue of the associated block Jacobi matrix is 

0.+x-1 
E.L= ---i-z-’ 

The approximate convergence rate or eigenvalue h is 

(20) 

Winslow [4] found that, for certain linear as well as nonlinear problems, a satis- 
factory “optimizing” scheme is 

(JJ(n) + h(“) - 1 
ru= W(n) djj(“) ’ (224 

w&t = 
2 

1 + (1 - py - % ’ 

lJJcn+l) = poJ;pt + (1 - p> CP, WV 
coo gg 0.01, p g 0.05. (224 

B For mesh generation, similar expressions are used, treating x and y as uncoupled. 
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w,, permits w to decrease in nonlinear problems when necessary. If X .= I, w is 
held constant in our computer programs.’ Winslow’s equation matrix is block 
tridiagonal [7, p. 2431 and is a two-cyclic matrix [ 13, p. 1021 as its associated block 
Jacobian matrix is weakly two-cyclic. Since diagonal square matrices need not be 
of the same order, the equation matrix in most cases can also be put in the form of 
a tridiagonal matrix. It may be a difficult task to find a strictly valid optimum 0) for 
poirzt relaxation. Equations (22a, b) for two-cyclic block relaxation were adapted 
in our SOR procedure for the two test problems, but were abandoned for obtaining 
the solution given in Ref. [16], as an w in the neighborhood of unity was needcc! 
here for convergence. 

Convergence is not guaranteed, especially if the diagonal dominance condition 
[ 10: 131 is not satisfied. Nevertheless, revised procedures may lead to a convergence 
process for practical use. For example, a direct-and-reverse relaxation procedure 
for linear second-order elliptic equations with selected underrelaxation terms [!7] 
may be used to insure convergence. 

A convergence measure E,M for mesh generation and an error measure Es for 
solution generation were printed out for guidance; 

(25) 

where RF,‘,! is the direct local weighted residual in the II-the iteration of the 
g-equation, g being x, I;, 4, respectively. If Es is defined analogous to ET,{ 
for 1 <. w ( 2, it will be a factor of one to four larger. ,!Tw and Es less then 10 s or 
smaller are usually required, especially when more than one vector component at 
each node is present (simultaneous partial differential equations). 

’ This procedure is recommended by Winslow. However, it appears to the author that for a 
general problem a possible advantageous provision may be added so that if &:-‘I < 1 (which is 
possible as w,, :> O), it should be set to unity. The process reduces to Gauss-Seidel’s method of 
successive displacement [7, p. 2361, the convergence of which requires either diagonal dominance 
and irreducibility of the equation matrix or positive definiteness. After h reduces again, new 
w,“‘I, > 1 may bc obtained to give a possibly higher rate of convergence. For (0 cc w < 2), the 
convergence is only assured if the equation matrix is positive definite [7, p. 2611, Rhich means all 
eigcnvalues are positive [15, p. 281. 



402 CHU 

IV. TEST CASES 

A. Torsion Problem for a Beam of Elliptic Cross Section [18] 

The governing equation for the reduced stress function 4 is 

v2+ = 0. 
The boundary condition is 

4 = *(x2 + Y”) 
on the boundary 

f+&. 

In the example, a = 2, b = 1 were used. 
The exact solution available for comparison is 

4 = ; g$ (x” - y”) + *. 

(26) 

(27) 

(28) 

(29) 

First, discrete points on the bounding ellipse are mapped onto the uniformly- 
spaced bounding parallelogram. This is a first-boundary value problem in the 
transform plane. The fictitious physical corner points are taken at x = isa, 
y=&bd&O n the top and bottom arcs between -2 < x < 2, the x distribu- 
tion is specified linearly at N points with the corresponding y given by Eq. (2X). On 
the left and right arcs, y is specified linearly at M points with the corresponding x 
given by Eq. (28). 

Numerical solutions were obtained for a 7 x 11 parallelogram and an 11 x 21 
parallelogram. The maximum local fractional error for the 7 x 11 mesh was 
1.481 x 1O-3 or 1.480 x 1O-3 at (2, 8) or (6,4), respectively. For the 11 x 21 
mesh, the errors near the corresponding location were 2.72 x 1O-4 at (4, 14) or 
(8,7). The asymmetry of the solution was negligible. 

With convergence criteria En; < 10-6, Es < IO-@, the total CP time was only 
5.75 set for the 7 x 11 net, and 9.81 set for the 11 x 21 net on a CDC-6600 
computer. For mesh generation, the number of iterations were 88 and 90 for the 
initial approximation, and 33 and 36 for the final approximation in the two cases, 
respectively. 

Next, the same problem was solved for a l/4 upper right domain, with mixed 
first- and second-boundary conditions. On the top and left boundary of the parallel- 
ogram in the transform plane, Eq. (27) holds, while, by symmetry on the left 
boundary (j > l), 



DEVELOPMENT OF A GENERAL FINITE DIFFBlRENCE APPKOXIMATION 403 

and, on the bottom boundary (i = M), 

With a 6 x 11 parallelogram in the transformed plane with equilateral triangle 
meshes, the physical plane mesh is shown in Fig. 3. 

z---t. , UPPER RIGHT CORNER 

o~~~~~~~~~~~ 

i 4 ---A 
a.5 1.0 1.5 2.0-1x 

FIG. 3a. Auxiliary mesh in the physical plane of a l/4-ellipse; M = 7, N = 11. 

/UPPER RIGHT CORNER 

u ‘4 -.y -Q u .--. \ & 
0 u.5 1.0 1.5 2.u x 

FIG. 3b. Auxiliary mesh in the physical plane of a I~b=ellipse; M = 11, N = 21. 
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The respective maximum local fractional error in the numerical solution was 
5.43 x 1O-3 and 1.65 x 1O-3 at x = 1.4, y = 0. The convergence rate was thus 
about 0.304, which is approximately a second order process for which the error 
bound decreases by a factor of 0.25 when mesh size is halved. 

With convergence criteria EM < 1O-g, Es < 1O-g, the total CP time was 8.03 set 
for the 6 x 11 net, and 18.60 set for the 11 x 21 net on a CDC-6600 computer. 
For mesh generation, the numbers of iterations were 88 and 78 for the initial 
approximation and 33 and 76 for the final approximation in the above two cases, 
respectively. 

The complete computer program and tables of results for this problem are given 
in Ref. [3]. The usual SOR process with Eq. (22b) was convergent in this case. 

B. MHD Duct Flow Problem [19] 

The governing equations are 

2 = v2, Pa, b, c> 

L?z,b+G=O, G=l+Ha* 
aY ’ 

9 = v2, Pa, b, 4 

where 

4 - nondimensional (axial) induced magnetic inductance, (B in Ref. [19]) 
# - nondimensional axial velocity (V in Ref. 19) 

Ha - Hartman number (M in Ref. [19]). 

The boundary condition is 

a4 a4 a4 -&- + u3cj = oil x + 012 - + 014 = 0, 
ay 

011 = cos(n, x), a2 = cash Y>, (344 

and 

* = 0, (35) 

where IZ is the outer normal from the fluid and 01~ is the conduction parameter (+,, 
in Ref. [19]). The computer program is given in Ref. [20]. 

As a vector equation with two components at each node, the matrix equation, 
having large off-diagonal terms, is solved by SOR. However, simple reduction in 
the underrelaxation factor of the “nonhomogeneous term,” F and G, does not 
assure convergence. For a nonlinearly spaced boundary lattice, the SOR procedure 
with an underrelaxation factor of 0.025 (Appendix B) with o given by Eq. (22b) 
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failed to converge, while a direct-and-reverse SOR procedure8 converged. The 
latter also converged for the example given below for w - 1 without underrelaxed 
terms, at a faster rate [17]. 

As an example, the results for the case of a perfectly conducting square for a 
Hartman number of 6 (Fig. 4) were compared with Fourier series solution. The 
mesh was finer nearer the corners. The maximum fractional error of $soR with 
respect to $,,,, is about 0.024 and that of I,&~ with respect to &,8X is about 0.045. 
The absolute error of the latter is only 1.5 x 10 3. Higher accuracies can be 
obtained with finer nets. Due to the special nature (large ofI-diagonal matrix 
coefficient) of this set of equations, considerably more machine time is required. 
With E..M < 10 yz Es < lO-‘j, the CP time for /M --: 21, N = 21 was about 5 min 
on a CDC-6400 computer. The number of iterations to obtain the solution is of the 
order of 600. More cases are given in Ref. [20]. 

TOP BOUXDARY 7 I 

YrI,JI.-x(~~~:,tl-~,,~;1-J) -CENTER LINE OF DXT 

y~~,Jl~-y~n;+l-I,N~l-J1 

FIG. 4. Auxiliary mesh for a square duct with finer nets near corners; diagonal-symmetric 
nodes, M = N : 21. 

v. COxrlJSIONS 

The basic idea and the usefulness of a “machine transformation” have been well 
demonstrated by the examples shown. It seems to possess a high potential to apply 

8 This is a point-by-point SOR procedure, first in direct order, then in reverse order back to the 
first point to complete one iteration. 



406 CHU 

directly or seminumerically to many physical problems and partial differential 
equations (not necessarily purely elliptic). Future research in extending its applica- 
tions appears to be a significant task for research engineers and mathematicians. 

APPENDIX A: COEFFICIENTS OF THE TRANSFORMED EQUATION 

The coefficients in Eq. (13) are 

where 

(A-6) 

(A-7) 

(A-8) 

(A-9) 
(A-10) 

5, , &, , qe , Q, , Jare given in Eqs. (3) and (5a-d). It can be readily shown that 
-- 

4AC - B2 = (4AC - B2)(&qv - &Q)~ = (4AC - B2). 

Thus, the equation does not change type. 

APPENDIX B: GOVERNING DIFFERENCE EQUATION FOR THE INTERIOR POINTS 

Y$+F=Ois 

;I C,$, - C,&, + F = R, R = 0 at all points, (B-1) 
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where 

407 

(H-2) 

(8-3) 

W-4) 

(H-5) 

(R-6) 

(B-7) 

(B-8) 
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